地盤冷熱利用による住宅のパッシブクーリングに 関する研究(梗概)

片山 忠久

1. はじめに

季間蒸暑の地域が大部分を占める日本においては,自 然エネルギーの利用による住宅の冷却方法,いわゆる パッシブクーリング手法の開発と実用化が重要な課題で ある。戸建住宅の場合,床下地盤面は地盤の持つ大きな 熱容量や日射遮蔽,水分蒸発により,夏季において住宅 の他の部位に比較して低温な面となっている。本報告で は,これに接して冷却される床下の空気を居室に導入す るというパッシブクーリング手法を提案し,その効果を 試験家屋を用いた屋外実験および数値シミュレーション により検討する。

まず、床下の熱挙動計算モデルを作成し、その妥当性 を屋外実験により検討する。このモデルを用いて床下の 冷却能力に関する種々のパラメータについて調べる。次 に、このモデルを室温解析プログラムと結合して、透過 日射熱取得の有無等、種々の条件における試験家屋の数 値シミュレーションおよび屋外実験を行い、両者の比較 によりこのパッシブクーリング手法に関する数値シミュ レーション法の妥当性を検討する。さらに、このパッシ ブクーリング手法を用いた種々の構造を持つ実大スケー ルの住宅に関する数値シミュレーションを通して、この 手法の実用性について検討する。

表一1 試験家屋による実験の概要

実験No. (実験期日)	日射遮蔽の状況	換気の状況
1 (880707)	窓のかわりに断熱壁体 で日射を遮蔽	空気の流路は 外気→床下→ 5
2 (880809)	引違い窓(大きさ60cm ×60cm)のガラスを通 して日射透過	至N→小虛要 →外気(右図 —— 参照)。
3 (880804)	南面する引違い窓の上 10㎝に張出し長さ45㎝ の水平庇を設置	大井中央に設 けた換気扇に より 150m ³ /h の換気を行う。

記 号

Ah	:床下空間の流路の高さ	,	m
Aw	:床下空間の流路の横幅	,	m
CD	:地盤面から地中への伝導熱量	,	${ m W}/{ m m^2}$
Cf	:床下空間の管摩擦係数		
C_p	:空気の定圧比熱	,	kJ/kgK
CV	:空気から地盤面への対流伝熱量	,	${ m W}/{ m m^2}$
H_{c}	:床下の冷却能力	,	W
h _r	:地盤面の平均突起高さ	,	m
k	:地盤面の水分蒸発比		
LE	:水の気化熱	,	$\mathrm{kJ/kg}$
NLR	:地盤面の長波長放射収支量	,	${ m W}/{ m m^2}$
Pr	:空気のプラントル数		
R	:床下空間の流路の水力半径	,	m
T_g	:ガイド板表面の絶対温度	,	K
T_{s}	:地盤表面の絶対温度	,	K
v	:床下空間の流路の平均流速	,	m/s
WE	:水分蒸発による熱伝達量		W/m^2
x	:床下入口からの距離	,	m
Xa	:床下空気の絶対湿度	,	kg/kg'
Xs	:地盤表面温度における飽和絶対湿度	,	kg/kg'
$lpha_{ m c}$:地盤面における対流熱伝達率	,	$\mathrm{W}/\mathrm{m}^{2}\mathrm{K}$
α_{cg}	:ガイド板における対流熱伝達率	,	$\mathrm{W}/\mathrm{m}^{2}\mathrm{K}$
$\alpha_{\rm r}$:地盤面とガイド板の放射熱伝達率	,	$\mathrm{W}/\mathrm{m^2}~\mathrm{K}$
γ	:空気の比重量	,	kg/m³
σ	:Stefan-Boltzmann 定数 (5.61×10^{-8})	,	${\rm W}/{\rm m^2~K^4}$
⊿t	:時間の刻み幅	,	S
⊿x	:床下空間の流路方向の刻み幅	,	m
$ heta_{ m a}$:床下空気温度	,	്റ
$ heta_{ m g}$:ガイド板の表面温度	,	°C
$ heta_{ m s}$:地盤表面温度	,	°C

〔添字〕

- in :床下空間の流入開口(床下換気口)
- j : 地盤内および床下空気流路の位置を表
 す差分要素の番号
- n :時間ステップ数
- out :床下空間の流出開口(床面開口)

2. 床下における熱挙動の数値シミュレーション

床下換気口から導入された外気を地盤面に接触させて 十分に冷却するため,水平のガイド板により流路の高さ を低くして気流を地盤面に近づけ,さらに垂直の仕切り を設置して流路を長くする。このような床下空間の熱挙 動をモデル化して数値シミュレーションを行う。

2.1 床下空間の熱挙動計算モデル

解析を簡単にするため、床下空間の流路の屈曲を考慮 せず直管として扱う。また、熱流は上下方向と流路方向 だけを考え、水平横方向は無視する。気流と地盤面およ びガイド板との熱交換の概念を図-1に示す。単位面積 当りの床下地盤面の熱収支は次のようになる。

図-1 床下空間の熱挙動

$$CV_{j,n} - WE_{j,n} + NLR_{j,n} - CD_{j,n} = 0$$
⁽¹⁾

ここで、対流伝熱量 $CV_{j,n}$ は空気から地盤面への方向, 長波長放射収支量 $NLR_{j,n}$ は地盤面へ入射する方向,伝 導熱量 $CD_{j,n}$ は地盤面から地中への方向をそれぞれプラ スとする。蒸発潜熱量 $WE_{j,n}$ は地盤面から蒸発する場合 をプラスとする。 $CV_{j,n}$ は次式で計算される。

$$CV_{j,n} = \alpha_c \ (\theta_{aj,n} - \theta_{sj,n})$$
 (2)

 α_{c} は次式^{χ_{1})²)により求める。}

$$\alpha_{\rm c} = c_{\rm p} \cdot \gamma \cdot v \cdot c_{\rm f} \cdot \Pr^{-3/2} / 2$$

$$c_{\rm f} = \{1.68 + 2 \cdot \log ({\rm R/h_r})\}^{-2} / 4$$
(3)
(3)
(3)

WE_i,nはルイスの関係から次のように表される^{x3)}。

$WE_{j,n} = k \cdot LE(\alpha_c/c_p) (x_{sj,n} - x_{aj,n})$	(5)
$LE = 2502 - 2.34 \theta_{sj,n}$	(6)
$c_{p} = 1.01 - 1.84 (x_{sin} + x_{ain}) / 2$	(7)

$$c_p = 1.01 - 1.84 (x_{sj,n} + x_{aj,n}) / 2$$

NLR_j, は近似的に次式で表す。

$$NLR_{j,n} = \alpha_r \left(\theta_{gj,n} - \theta_{sj,n} \right)$$
(8)

*a*rは地表面とガイド板の放射率を1.0と仮定して,次式で計算する。

$$\alpha_{\rm r} = 4 \sigma \{ (T_{\rm gi,n} + T_{\rm sj,n}) / 2 \}^3$$
 (9)

CD_i,nは、地中熱伝導を垂直方向の1次元と仮定して、逐 次状態遷移式^{x4)}により計算する。これは地中の一定深さ に境界条件となる恒温層を設定して、地盤表面温度とこ の地中温度から計算するものである。

以上のような各計算式を(1)式に代入するわけである が、この中の $\theta_{aj,n}$, $\theta_{sj,n}$, $\theta_{gj,n}$, $x_{aj,n}$, $x_{sj,n}$ の5つが未知 数である。 $x_{sj,n}$ は $\theta_{sj,n}$ から計算できる。 $\theta_{gj,n}$ はガイド板を 完全断熱と仮定すると(10)式が成り立つので、(11)式のよう に $\theta_{aj,n}$ と $\theta_{sj,n}$ で表される。

$$\alpha_{cg} \left(\theta_{aj,n} - \theta_{gj,n} \right) = \alpha_{r} \left(\theta_{gj,n} - \theta_{sj,n} \right)$$

$$\theta_{gj,n} = \left(\alpha_{cg} \theta_{aj,n} + \alpha_{r} \theta_{sj,n} \right) / \left(\alpha_{cg} + \alpha_{r} \right)$$

$$(10)$$

acg は(3)式,(4)式から求める。残りの3つの未知数に対してあと2つの方程式が必要である。これは長さ *dx* の流路区間における空気の熱収支および水蒸気の収支から、それぞれ(12)式,(13)式のように表される。

$$c_{\mathbf{p}} \cdot \boldsymbol{\gamma} \cdot A\mathbf{h} \cdot A\mathbf{w} \cdot \boldsymbol{\Delta} \mathbf{x} \frac{\boldsymbol{\theta}_{\mathbf{a}\mathbf{j},\mathbf{n}} - \boldsymbol{\theta}_{\mathbf{a}\mathbf{j},\mathbf{n}-1}}{\boldsymbol{\Delta}\mathbf{t}}$$

$$= \boldsymbol{\alpha}_{\mathbf{c}} \cdot \boldsymbol{\Delta} \mathbf{x} \cdot A\mathbf{w} \quad (\boldsymbol{\theta}_{\mathbf{s}\mathbf{j},\mathbf{n}} - \boldsymbol{\theta}_{\mathbf{a}\mathbf{j},\mathbf{n}})$$

$$+ A\mathbf{h} \cdot A\mathbf{w} \cdot \mathbf{v} \cdot \mathbf{c}_{\mathbf{p}} \cdot \boldsymbol{\gamma} \quad (\boldsymbol{\theta}_{\mathbf{a}\mathbf{j}-1,\mathbf{n}} - \boldsymbol{\theta}_{\mathbf{a}\mathbf{j},\mathbf{n}})$$

$$+ \boldsymbol{\alpha}_{\mathbf{c}\mathbf{g}} \cdot \boldsymbol{\Delta} \mathbf{x} \cdot A\mathbf{w} \quad (\boldsymbol{\theta}_{\mathbf{g}\mathbf{j},\mathbf{n}} - \boldsymbol{\theta}_{\mathbf{a}\mathbf{j},\mathbf{n}}) \qquad (12)$$

$$\begin{aligned} \operatorname{Ah} \cdot \operatorname{Aw} \cdot \operatorname{\Delta} \mathbf{x} \cdot \gamma \frac{1}{\operatorname{\Delta} \mathbf{t}} & \left(\frac{\mathbf{x}_{a\mathbf{j},n}}{1 + \mathbf{x}_{a\mathbf{j},n}} - \frac{\mathbf{x}_{a\mathbf{j},n-1}}{1 + \mathbf{x}_{a\mathbf{j},n-1}} \right) \\ &= \operatorname{Ah} \cdot \operatorname{Aw} \cdot \mathbf{v} \cdot \gamma \quad \left(\frac{\mathbf{x}_{a\mathbf{j}-1,n}}{1 + \mathbf{x}_{a\mathbf{j}-1,n}} - \frac{\mathbf{x}_{a\mathbf{j},n}}{1 + \mathbf{x}_{a\mathbf{j},n}} \right) \\ &+ \operatorname{Aw} \cdot \operatorname{\Delta} \mathbf{x} \cdot \mathbf{k} \quad \left(\operatorname{\boldsymbol{\alpha}}_{c} / c_{p} \right) \left(\mathbf{x}_{s\mathbf{j},n} - \mathbf{x}_{a\mathbf{j},n} \right) \end{aligned}$$
(13)

(12)式,(13)式において,左辺は右辺の各項に比較して微小なのでこれを無視する。その結果,たとえば(12)式は次のようになる。

$$\begin{aligned} \mathbf{A}\mathbf{h} \cdot \mathbf{A}\mathbf{w} \cdot \mathbf{v} \cdot \mathbf{c}_{\mathbf{p}} \cdot \boldsymbol{\gamma} & (\theta_{\mathrm{aj}-1,\mathbf{n}} - \theta_{\mathrm{aj},\mathbf{n}}) \\ = \boldsymbol{\alpha}_{\mathrm{c}} \cdot \mathbf{A}\mathbf{w} \cdot \boldsymbol{\Delta}\mathbf{x} & (\theta_{\mathrm{aj},\mathbf{n}} - \theta_{\mathrm{sj},\mathbf{n}}) \\ + \boldsymbol{\alpha}_{\mathrm{cg}} \cdot \mathbf{A}\mathbf{w} \cdot \boldsymbol{\Delta}\mathbf{x} & (\theta_{\mathrm{aj},\mathbf{n}} - \theta_{\mathrm{sj},\mathbf{n}}) \end{aligned}$$
(14)

床下の冷却能力 Hcを床下の入口と出口における空気の 顕熱量の差と定義する。Hcは(14)式の各項を床下の入口か ら出口まで積分することにより求められる。

$$H_{cn} = Ah \cdot Aw \cdot v \cdot c_{p} \cdot \gamma \quad (\theta_{a,in,n} - \theta_{a,out,n})$$

= $\sum_{j} \alpha_{c} \cdot Aw(\theta_{a,jn} - \theta_{s,jn}) \Delta x$
+ $\sum_{j} \alpha_{cg} \cdot Aw(\theta_{a,jn} - \theta_{g,jn}) \Delta x$ (15)

右辺の各項をそれぞれ(2)式および(10)式を用いて書き直し(1)式を考慮すれば、H。は次のように表される。

$$H_{cn} = \sum_{j} CD_{j,n} \cdot Aw \cdot \varDelta x + \sum_{j} WE_{j,n} \cdot Aw \cdot \varDelta x$$
(16)

上述した計算モデルの妥当性を検証するために,後述 する実験№1の実施日(1988年7月7日)における床下 空気温を計算して実測値と比較する。計算条件として Δxを0.2m, hrを1.5cm, kを0.7, 土の熱伝導率を0.61 W/mK,容積比熱を1,580kJ/m^aKとする。これらの数値 は基本的に以下の計算において共通に用いる。気温およ び湿度の入力条件には外気の値を用いる。地中温度の境 界条件には深さ40cmでの実測値を用いるが,7月上旬の その値は22℃でほぼ一定である。なお,地中熱伝導に関 しては,1か月間の助走計算を行っている。

床下空気温の測定点の位置を図-2(a)に示す。試験 家屋では床下に仕切りを1枚設けており,入口のP1,流 路の中央のP2および床面の出口P3の3点で測定を 行っている。これらの実測値と計算結果を比較して図 -2(b)に示す。P1の実測値は計算の入力条件として用 いている。P2およびP3における空気温の計算値は, 1℃以内の誤差で実測値とよく一致している。実際の熱 流は3次元的であり,気流の分布もより複雑であるが, これらの結果から判断して,床下空気温の計算にはこの 近似的なモデルの適用が十分に可能であると考える。な お,床下空間では湿度を測定していないので,直接計算 値と比較することはできないが,床下の湿度は床下空気 温の形成にかかわる蒸発に影響を与えており,その空気 温の計算値が実測値とほぼ一致していることを考慮する と,湿度に関しても問題はないものと考える。

2.2 流路の長さの影響

床面に設けた居室への出口空気温および床下の冷却能 力は流路の長さ,換気量,蒸発比などに影響される。こ こではまず,流路の長さについて検討する。

流路の高さおよび横幅をそれぞれ0.08m および1.3 m,平均流速を1.6m/s で一定と仮定する。流路の長さと して36m までの床下空間の熱挙動の計算を行う。床下入 口の気温および湿度として図-18に示す8月1日から7 日までの福岡の標準気象データを使用する。地中40cmの 境界条件は,8月上旬の実測値から23℃で一定とする。 計算結果の一部として,気温が比較的高い8月2日~3 日の計算値を図-3~5に示す。

床下空気温,地表面温度および対流伝熱量の流路の長 さによる変化を図-3に示す。空気温は床下入口におい て33.6℃であるのに対して,出口では24.3℃に低下して おり,その温度差は9.3℃である。床下入口付近の地盤面 温度は、空気で加熱されるため出口のそれより約2℃高 くなっている。床下入口から6mまでは空気温の低下が 著しく,この間の対流伝熱量は60W/m²~120W/m²に なっており,24m以降は10W/m²以下となる。

(16)式から H。は地中への伝導熱量と地盤からの蒸発潜

熱量の和となる。床下入口からの距離 x で積分した昼間 と夜間の伝導熱量 CD_{in}·Aw と蒸発潜熱量 WE_{in}·Aw を,それぞれ図ー4および図ー5に示す。昼間には x=24 mにおける冷却能力が x=36m における値の93%に達 している。この冷却能力を成分別に見ると, x=6m では 伝導成分が全体の22%であるが, x=36m では48%にな る。夜間には伝導成分の方向が逆転して蒸発成分と相殺 し,全冷却能力は昼間の値の1/2以下になる。

2.3 換気量の影響

ここでは地盤面の対流伝熱量および水分蒸発量に影響 を与える換気量すなわち流速について検討する。換気量 以外の計算条件は前項とすべて同じであるが,流路の長 さは24mに固定している。

床面出口の空気温と換気量の関係を図-6に示す。図 中の値は全日と8~21時(以下8:00~21:00と略記す る)の時間帯で平均し、さらにそれを8月1日~7日の 1週間に亘って平均したものである。換気量の増加とと もに床面出口空気温が上昇しているが換気量が400㎡/h 以上になるとその変化は小さくなる。そのときの出口空 気温は外気温より4~6℃低い値を示している。

換気量と単位面積当りの冷却能力との関係を図-7に 示す。床下の冷却能力は換気量の増大とともに増加し, 両者の関係は線形に近い。これは換気量の増大により対 流熱伝達率 *ac*が増加し,ルイスの関係における水分移動 係数 *ac*/*c*pも増加するので,蒸発潜熱量の増大により地 表面温度の上昇が押えられるためである。

2.4 蒸発比の影響

蒸発潜熱量は蒸発比kを用いて、(5)式より計算され る。蒸発比は同一表面温度の水面の蒸発量に対する地盤 面の蒸発量の割合と定義され、地表付近の土の含水率に よって変化する。ここでは蒸発比が床下の冷却能力にお よぼす影響について調べる。換気量を600m²/hとし、蒸発 比を除くその他の計算条件は前項と同一とする。

蒸発比と床面出口空気温の関係を図-8に示す。図中の値は図-6と同様の平均化を行ったものである。k=0すなわち蒸発なしの場合には、床面出口空気温が外気温より全日平均で1.6℃、8:00~21:00の平均で2.8℃低下しているが、k=1の場合には、この2つの平均値がそれぞれ4.3℃および5.9℃となる。

蒸発比と単位面積当りの冷却能力との関係を図-9に 示す。k=0の場合は冷却能力が全日平均で10W/m²,

^{8:00~21:00}の平均外気温度 = 31.0℃ 日平均外気温度 = 29.2℃

図-8 床下流出開口の空気温度におよぼす蒸発比の 影響

(福岡の標準気象データ,8月1日~7日)

図一9 床下の単位地表面積当り冷却力におよぼす蒸発
 比の影響
 (福岡の標準気象データ,8月1日~7日)

8:00~21:00の平均で20W/m^{*}であるが, k=1になる とこの2つの平均値がそれぞれ28W/m^{*}および37W/m^{*} となる。

以上のように蒸発比が出口空気温と冷却能力に与える 影響は非常に大きいが, k が0.4以上の場合にはほとんど 変化しなくなる。これは流路が十分に長いので, k が0.4 以上になると床下の空気がほぼ飽和状態に達し, 蒸発に よる冷却ができなくなるためと考えられる。

3. 試験家屋による実験および数値シミュレーション

ここでは、室内に入射する日射の有無等によって分類 される3種類の試験家屋による屋外実験と、それらに対 する数値シミュレーションを比較し、数値シミュレー ション法の妥当性について検討する。

3.1 実験および数値シミュレーションの概要

試験家屋は床下, 居室, 小屋裏の3スペースで構成されている。その平面を図一10に, 断面と各種測定点を図 一11に示す。床には床下と居室を結ぶ, 天井には居室と 小屋裏を結ぶ換気口がそれぞれあり, すべての開口は密 閉閉鎖することが可能である。空気温度は0.1mm ¢, 表面 および地中温度は0.3mm ¢ の T 熱電対, 湿度は高分子素 子湿度計で測定する。開口部の通過風量や室内の換気風 量が必要な場合, 開口部中央に温度補償型熱線風速計を 設置して流速を測定し換算する。外気温, 日射量, 風向・ 風速などの気象条件は試験家屋に近接する5 階建の建物 の屋上で測定している。

天井換気口に設置した小型換気扇(30W)によって、外

気は床下換気口から床下空間に吸い込まれ、そこで地表 面と接触して冷却された後、居室に導入されて居室温度 を低下させ、小屋裏空間を経て室外へ排出される。床下 空間は、流路を長くするため仕切り板を設置して(図-2 (a)参照)、さらに空気を地盤と十分接触させるため、地盤 面から8 cmの高さにガイド板を設けて2 層に分割してい る。以上の様子を図-12に示す。換気量は床下換気口に 設置したダンパーで調整できるが、この実験では150m²/h としている。

透過日射熱取得の影響を考慮するため、居室に窓がない場合、南と北の壁に60cm×60cmの窓を設ける場合、さらに南側の窓の上10cmに張り出し長さ45cmの水平庇を設ける場合の3種類の実験を行う。これらの実験をこの順番にそれぞれ実験No.1, No.2およびNo.3とし、その内容を表一1に示す。

床下冷気を居室に導入する際の空気温度の数値シミュ レーションは、次の2つのステップによって行われる。 まず、前章で述べた床下熱挙動計算モデルを用いて、床 面出口空気温および湿度を計算する。地中40cmの境界条 件には前述のように、7月上旬は22℃、8月上旬は23℃ という実測値を与える。次に、多数室室温解析プログラ ム PSSP/MV1 ^{x5)}を用いて居室の空気温を求める。

3.2 実験値と計算値の比較

実験No.1,実験No.2および実験No.3における,床面出 口と居室の空気温の実験値と計算値を比較して,それぞ れ図-13,図-14および図-15に示す。実験結果による

図-13 実験No.1におけるB棟の室温と床面開口気温 の実測値と計算値の比較

図-14 実験Na.2におけるB棟の室温と床面開口気温 の実測値と計算値の比較

図-15 実験No.3におけるB棟の室温と床面開口気温の実測値と計算値の比較

と、実験No.1では居室空気温が外気温より最大4℃低く なっている。実験No.2では日射が窓ガラスを透過し、ま た実験No.3では庇による日射遮蔽が完全ではないので、 居室と床面出口における空気温の差が実験No.1より大き く、居室の空気温は外気温に近づいている。しかし、こ れらの実験においても居室の空気温が外気温より1日中 低い値を示し、その差はそれぞれ最大4℃および2℃で ある。

これらの実験結果と数値シミュレーション結果との誤 差は1℃以内であり、よく一致していると考えてよい。 従って、透過日射や庇の有無にかかわらずこの数値シ ミュレーション法の適用が可能であると考えられる。

4. 実大住宅におけるパッシブクーリング効果の予測

実大スケールの住宅モデルに対して,このパッシブ クーリング手法を適用した場合の数値シミュレーション を行い,その実用性について検討する。

4.1 住宅の仕様

ここでは木造,外断熱鉄筋コンクリート造および壁内 通気構法の3種類の構造を持つ平屋の実大住宅について 検討する。それらの仕様を構造別に次に述べる。 (1) 木造住宅

木造住宅の概要を図-16(a)~(d)に示す。(a)は南側立面, (b)は断面である。(c)は床下における空気の流路であるが, 地盤面から8 cmの高さにガイド板を設置している。中央 部にある基礎の左右は対称とし間隔1.3m で仕切りを設 ける。居室の天井に設置された換気扇で,外気を建物の 北側にある床下換気口から床下空間に導入する。長さ24 mの床下の流路で冷却された外気は床面に設けた開口 から居室に入る。居室に導かれた冷気は天井の換気扇を 経て小屋裏空間に入り,南側小屋裏換気口から室外へ排 出される。床下地盤面での水分蒸発比は0.7で一定とす る。換気扇による換気量を1,200㎡/hとするが,この量は 居室の換気回数に換算すれば10回/hとなる。また,廊下 の東西側のドアおよび居室のドアは常時閉鎖され,居室

(d) 木造モデル住宅の構成材料

図-16 シミュレーションのためのモデル住宅

だけを床下冷気を利用する空間と考える。計算において は室内の照明,人工発熱,生活による水蒸気の発生など を無視する。(b)に示す①~⑦の各部位の材料を(d)に示す。 計算の際に必要となるこれらの材料の熱物性値は文献 6)による。

(2) 鉄筋コンクリート造住宅

図-16のモデルと同一形状の外断熱 RC 造住宅を考え る。図-16(b)に示す①~⑦の各部位の構成材料を表-2 に示す。各材料の熱物性値は文献6)参照。床下流路の 構成および換気量等は木造の場合と同一である。

(3) 壁内通気構法住宅

床下の湿気を直接居室に持ち込むことを防ぐために, 図-17に示すように壁内通気層へ床下冷気を導入する換 気方法を考える。外壁の内側に 6 mm厚のフレキシブル ボードで厚さ10cmの通気層を作り,他の部位の構成は木 造住宅モデルと同一とする。

4.2 居室内空気の温度および相対湿度

図-18に示す8月1日~7日の福岡の標準気象データ を入力条件とし、床下冷気を導入した場合の木造住宅の 居室空気温と湿度の数値シミュレーションを行う。この パッシブクーリング手法は床下における蒸発を大きな冷 熱源としているので、室内に導かれる空気の湿度が非常 に高くなる可能性がある。実際のパッシブクーリング効 果を評価するためにはこの湿度の影響を無視できない。 そこで気温、湿度の計算値から総合温熱指標 SET*を求 め、これによる評価もあわせて行う。なお、SET*は実在 環境における着衣量を0.3clo、代謝量を1.1Met と仮定 し、標準環境ではそれぞれ0.6clo、1.1Met、さらに風速 を0.15m/sとして計算する。 8月6日~7日の床面出口と居室の空気温および居室 のSET*の計算値を外気温とともに図一19に示す。出口 および居室の空気温は外気温よりそれぞれ最大8℃およ び6℃低くなっている。SET*は夜間には出口空気温よ りも下がる。昼間には湿度の影響により居室空気温より 高くなるが、その差は1℃以下である。居室の空気温お

表-2 コンクリート造モデル住宅の構成材料

部位 材料および厚 No.* (mm)	部位 材料および厚 No.* (mm)
 フォーム ボリスチレン 30 コンクリート 120 フォーム ボリスチレン100 鉄板 1 ガラス 3 鉄板 3 空気層 50 鉄板 3 	⑤たたみ 50 7 $t-4$ ボリスチレン 30 コンクリート 120 ⑥合板 10 7 $t-4$ ボリスチレン 30 コンクリート 120 ⑦スレート 20 合板 10

*図-16(b)参照

よび SET*とも外気温が30℃を超えても常に30℃以下 となっている。これは温熱感覚としてのパッシブクーリ ング効果を示すものである。

上述した3種類の住宅における居室の空気温,相対湿 度および SET*の日最高、日平均および日最低の7日間 平均値を、SET*を除く外気のそれらの値と比較して図 -20に示す。最高室温は木造の場合4℃, RC 造の場合 5℃, 壁内通気構法の場合3℃それぞれ最高外気温より 低い。すべての住宅において平均室温も平均外気温より 低いが、直接室内に空気を導かない壁内通気構法の場合 が最も高い値を示す。相対湿度は逆にすべての住宅にお いて最高値, 平均値および最低値とも外気より高いが, 壁内通気構法の場合が最も低い値となっている。また, RC 造の住宅は熱容量が大きいため、室温および相対湿 度とも変動幅が最も小さい。これらの傾向を SET* で評 価すると、木造および RC 造の場合にはその平均値がほ ぼ平均室温と一致しているが、壁内通気構法の場合には 相対湿度の影響により平均室温より約1℃下がり、3種 類の住宅の中で最も低くなる。また,SET*の平均値は3 種類の住宅とも平均外気温より2℃以上低くなる。

5.まとめ

(1) 床下空間の流路の長さが長くなると,床下の冷却 能力が増加し出口空気温が低下するが,流路の長さが24 m以上になると,このような変化が小さくなる。

(2) 床下の換気量が増大すると、床下の冷却能力は増大するが、出口空気温はやや高くなる傾向を示す。

(3) 床下地盤面の蒸発比が増加すると、床下の冷却能 力が急増し、出口空気温が急激に低下するが、その値が 0.4以上になるとその変化の割合は小さくなる。

(4) 福岡の標準気象データに基づく計算によると,夏 季の日中,実大スケールの木造,RC造および壁内通気構 法住宅において,床下冷気の導入により室温および室内

図-20 室内の気温, SET*および相対湿度のシミュ レーション結果 (福岡の8月1日~7日の標準気象データ使用)

のSET*を外気温より低い30℃以下に保つことができ, このパッシブクーリング手法の実用性が示唆された。

〈参考文献〉

- 1) 西川兼康,藤田恭伸:伝熱学,理工学社,1982
- 2) Schlichting, H.: Boundary-Layer Theory, 7th Edition, McGraw-Hill, 1979
- 3)林徹夫,浦野良美:都市の地表面熱収支に関する研究一土地被 覆状況を考慮した福岡市における解析一,九州大学工学集報, 第59巻,第4号, pp. 503-509, 1986.
- 4)浦野良美,渡辺俊行:状態遷移行列による多層平面壁体伝熱系の解析 その1 近似伝達関数モデルの作成とその精度,日本 建築学会論文報告集, No.305, pp.97-111, 1981.7
- 5)林 徹夫,浦野良美,渡辺俊行,龍 有二:シミュレーション による室温変動系の感度解析的考察,日本建築学会建築環境工 学論文集,第5号, pp.95-102, 1983. 11
- 6)松尾 陽,横山浩一,石野久弥,川元昭吾:空調設備の動的熱 負荷計算入門,日本建築設備士協会,1980

〈研究組織〉

主査	片山 忠久	九州大学総合埋上字研究科
		教授
委員	林 徹夫	九州大学総合理工学研究科
		助教授
	塩月 義隆	九州大学総合理工学研究科
		助手
	堤 純一郎	東和大学講師
	張 晴原	九州大学総合理工学研究科
		大学院生(現在九州電気工事
		株式会社研修員)